Circle Geometry Formulas and Notes
Arc Angle
\displaystyle \theta = \frac{360 \degree l}{2 \pi r}
Arc Length
Arc Length(l) \displaystyle = \frac{ \theta \degree 2 \pi r}{360 \degree }
Sector Area
Sector Area \displaystyle = \frac{ \theta \degree \pi r^{2} }{360 \degree }
Segment
Segment = Sector - AreaΔABC
Chord Length
Chord Length(AB) \displaystyle = \sqrt{(AC)^{2}+(BC)^{2}-2ab\cos( \theta)}
Inscribed Angle
An inscribed angle is an angle with its vertex on the circle formed by two intersecting chords
Angle A \displaystyle = \frac{1}{2} Angle B
Tangent Chord Angle
x = \frac{1}{2} (AB)
Intersecting Chords
x = \frac{1}{2} (AB+CD)
Two Tangents
\angle ABC = \frac{1}{2} (ADC-AC)
Two Secants
\angle CAE = \frac{1}{2} (CE-BD)
Secant and Tangent
x = \frac{1}{2} (BD-BC)