Derivatives Formulas and Notes
Definition of a Derivative Properties of a Derivative Power Rule Product Rule Quotient Rule Chain Rule Exponential and Logarithm Functions Trigonometric Functions Inverse Trigonometric Functions Hyperbolic Functions Common Derivatives
Definition of a Derivative
The derivative of f (x) with respect to x is the function f ′(x) and is defined as,
\displaystyle f'(x) = \lim_{h \to 0} { \frac{ {f(x+h)-f(x)} }{h} }.
Example
Find the derivative of \displaystyle f(x) = x^{2}
\displaystyle f'(x) = \lim_{h \to 0} { \frac{ {f(x+h)-f(x)} }{h} }
\displaystyle f'(x) = \lim_{h \to 0} { \frac{ {(x+h)^{2}-x^{2}} }{h} }
\displaystyle f'(x) = \lim_{h \to 0} { \frac{ {x^{2}+2xh+h^{2}-x^{2}} }{h} }
\displaystyle f'(x) = \lim_{h \to 0} { \frac{ {2xh+h^{2}} }{h} }
\displaystyle f'(x) = \lim_{h \to 0} { \frac{ {h(2x+h)} }{h} }
\displaystyle f'(x) = \lim_{h \to 0} { {2x+h} }
\displaystyle f'(x) = { {2x+(0) } }
\displaystyle f'(x) = 2x
Properties of Derivatives
Power Rule
If \displaystyle f(x) = x^{n} then
\displaystyle f(x) = nx^{n-1} .
Example
Find the derivative of \displaystyle f(x) = x^{4}
\displaystyle f'(x) = 4 \cdot x^{4-1}
\displaystyle f'(x) = 4x^{3}
Find the derivative of \displaystyle f'(x) = 4x^{6}
\displaystyle f'(x) = 6 \cdot 4x^{6-1}
\displaystyle f'(x) = 24x^{5}
Product Rule
\displaystyle \frac{d}{dx}(f(x)g(x)) = {f'(x)g(x)+f(x)g'(x)}
Example
Find the derivative of \displaystyle (x^{4})(x^2-4x)
Let \displaystyle f(x) = x^{4}, g(x) = x^2-4x
\displaystyle f'(x) = 4x^{3}, g'(x) = 2x-4
\displaystyle \frac{d}{dx}(f(x)g(x)) = {f'(x)g(x)+f(x)g'(x)}
\displaystyle = {(4x^{3})(x^2-4x)+(x^{4})(2x-4)}
\displaystyle = { 4x^{5} - 16x^{4}+ 2x^{5}-4x^{4} }
\displaystyle = { 6x^{5} - 20x^{4} }
Quotient Rule
\displaystyle \frac{d}{dx} \left( \frac{ {f(x)} }{ {g(x)} } \right) = \frac{f'(x)g(x)-f(x)g'(x)}{ {g(x)}^2}
Example
Find the derivative of \displaystyle \frac{x^{2}}{x^{4}-3}
Let \displaystyle f(x) = x^{2}, g(x) = x^{4}-3
\displaystyle f'(x) = 2x, g'(x) = 4x^{3}
\displaystyle \frac{d}{dx} \left( \frac{ {f(x)} }{ {g(x)} } \right) = \frac{f'(x)g(x)-f(x)g'(x)}{ {g(x)}^2}
\displaystyle = \frac{ (2x)(x^{4}-3)-(x^{2})(4x^{3})}{ {(x^{4}-3)}^2}
\displaystyle = \frac{ 2x^{5} - 6x -4x^{5} }{ {(x^{4}-3)}^2}
\displaystyle = \frac{ -2x^{5} - 6x }{ {(x^{4}-3)}^2}
\displaystyle = \frac{ -2x( x^{4}+3) }{ {(x^{4}-3)}^2}
Chain Rule
Suppose that we have two functions f(x) and g(x)
and they are both differentiable.
If y=f(u) and u=g(x) then the derivative of y is,
\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}
Example
Find the derivative of \displaystyle y = ({x^{2}-5x})^{2}
\displaystyle f(u) = (u)^{2} , \displaystyle u = {x^{2}-5x}
\displaystyle \frac{dy}{du} = 2(u) , \displaystyle \frac{du}{dx} = 2x-5
\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}
= 2(u) \cdot (2x-5)
Remember that \displaystyle u = {x^{2}-5x} .
2(u) \cdot (2x-5) = 2({x^{2}-5x}) \cdot (2x-5)
= (2x^{2}-10x)(2x-5)
Exponential and Logarithm Functions
\displaystyle \frac{d}{dx}(a^{x}) = a^{x} \ln(a)
Example
Find the derivative of \displaystyle f(x) = 5^{x}
\displaystyle f'(x) = 5^{x} \ln(5)
Example
Find the derivative of \displaystyle f(x) = e^{x}
\displaystyle f'(x) = e^{x} ( \ln(e))
\displaystyle f'(x) = e^{x} (1)
\displaystyle f'(x) = e^{x}
\displaystyle \frac{d}{dx}( \ln(x) ) = \frac{1}{x}
\displaystyle \frac{d}{dx}( \log_{a}{(x)} ) = \frac{1}{ x \ln(a)}
Example
Find the derivative of \displaystyle f(x) = \log_{6}{(x)}
\displaystyle f'(x) = \frac{1}{ x \ln(6)}
Trigonometric Functions
Inverse Trigonometric Functions
Hyperbolic Functions
Common Derivatives