Exponential Functions Formulas and Notes
Exponential Functions
These are functions in the form \displaystyle y=a \cdot b^{x}+k.
When \displaystyle a > 0, the function increases.
When \displaystyle a < 0, the function decreases.
When \displaystyle b > 1, the function increases.
When \displaystyle 0 < b < 1, the function decreases.
When \displaystyle b \leq 0, the function is undefined.
\displaystyle k is the horizontal asymptote.
When \displaystyle k > 0, the function shifts vertically upwards by k units.
When \displaystyle k < 0, the function shifts vertically downwards by k units.
Example
Plot \displaystyle f(x) = 4^{x}.
\displaystyle f(x) = 1 \cdot 4^{x}.
\displaystyle a = 1, b = 4
\displaystyle a > 0, b \geq 1.
The function increases.
x | -2 | -1 | 0 | 1 | 2 |
f(x) | 0.0625 | 0.25 | 1 | 4 | 16 |
Example
Plot \displaystyle f(x) = -1 \cdot 4^{x}.
\displaystyle a = -1, b = 4
\displaystyle a < 0.
The function decreases.
x | -2 | -1 | 0 | 1 | 2 |
f(x) | -0.0625 | -0.25 | -1 | -4 | -16 |
Example
Plot \displaystyle f(x) = 4^{x} + 3.
\displaystyle f(x) = 1 \cdot 4^{x} + 3.
\displaystyle a = 1, b = 4, k = 3
\displaystyle a > 0; k > 0.
The function increases. The function shifts vertically upwards by 3 units.
x | -2 | -1 | 0 | 1 | 2 |
f(x) | 3.0625 | 3.25 | 4 | 7 | 19 |
Example
Plot \displaystyle f(x) = 4^{x} - 3.
\displaystyle f(x) = 1 \cdot 4^{x} - 3.
\displaystyle a = 1, b = 4, k = - 3
\displaystyle a > 0; k < 0.
The function increases. The function shifts vertically downwards by 3 units.
x | -2 | -1 | 0 | 1 | 2 |
f(x) | -2.9375 | -2.75 | -2 | 1 | 13 |