Contents
Mean, Median, Mode, Variance, Standard Deviation, Range Regression, Correlation Permutations and Combinations

Statistics Formulas and Notes


Mean, Median, Variance, Standard Deviation, Range


Mean

The mean is the sum of all data values divided by the number of data values.
\bar{x} (x bar) is used to denote the mean.
\bar{x}=\frac{\sum x_{i}}{n}
Example
Data set: 3, 4, 5, 6, 7.
\bar{x}=\frac{\sum x_{i}}{n}
\bar{x}=\frac{ 3+4+5+6+7}{5}
\bar{x}=\frac{ 25}{5}
\bar{x}=5

Median

The median is(are) the value(s) in the middle of a dataset when the dataset is arranged in ascending order.
Example 1
Data set: 9, 3, 1, 2, 8, 6, 7.
In ascending order: 1 , 2 , 3 , 6 , 7 , 8 , 9.
6 is the value in the middle. 6 is the median.

Example 2
Data set: 7, 6, 4, 9, 5, 1, 2, 8.
In ascending order: 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9.
In this case we have two numbers that are in the middle: 5 and 6. We add these numbers together and divide by 2 to get the median.
median = \frac{5+6}{2}
median = 5.5

Sample Variance

The Variance is a measure of how spread out numbers are. s^{2} is used to denote the sample variance. s^{2}=\frac{\sum \left( x_{i}- \bar{x} \right)^{2}}{n-1}
\bar{x}: mean
n: number of values
Example 1
Data set: 1 , 2 , 3 , 8 , 9.
\bar{x} = 4.6
n = 5
s^{2}=\frac{\sum \left( x_{i}- \bar{x} \right)^{2}}{n-1}
s^{2}=\frac{ \left( 1 - 4.6 \right)^{2} + \left( 2 - 4.6 \right)^{2} + \left( 3 - 4.6 \right)^{2} + \left( 8 - 4.6 \right)^{2} + \left( 9 - 4.6 \right)^{2} }{5-1}
s^{2}=\frac{ 53.2 }{4}
s^{2}= 13.3

Sample Standard Deviation

The standard deviation is the square root of the variance.
s= \sqrt{ \frac{\sum \left( x_{i}- \bar{x} \right)^{2}}{n-1}}
For the example above, the sample variance is 13.3.
s= \sqrt{ 13.3 }
s= 3.647

Population Variance

The Variance is a measure of how spread out numbers are. \sigma^{2} is used to denote the sample variance. \sigma^{2}=\frac{\sum \left( x_{i}- \mu \right)^{2}}{n}
\mu : mean
n: number of values

Population Standard Deviation

The standard deviation is the square root of the variance.
\sigma= \sqrt{ \frac{\sum \left( x_{i}- \mu \right)^{2}}{n}}

Range

Range = highest value - lowest value


Regression, Correlation


Correlation Coefficient

The correlation coefficient is used to measure how strong a relationship is between two variables. r is used to denote the correlation coefficient.
r= \frac{n\left(\sum{xy} \right)-\left(\sum{x} \right) \left(\sum{y} \right) }{ \sqrt{ \left[ n \left( \sum{x^{2}} \right)-\left( \sum{x} \right)^{2} \right] \left[ n \left( \sum{y^{2}} \right)-\left( \sum{y} \right)^{2} \right] }}

The value of r is between -1 and 1. r=1 indicates a strong relationship. r=-1 indicates a weak relationship. r=0 indicates no relationship.

Example

x    y
23
56
79
94
44

n = 5
\sum{x} = 27
\sum{y} = 26
\sum{xy} = 151
\sum{x^{2}} = 175
\sum{y^{2}} = 158
r= \frac{n\left(\sum{xy} \right)-\left(\sum{x} \right) \left(\sum{y} \right) }{ \sqrt{ \left[ n \left( \sum{x^{2}} \right)-\left( \sum{x} \right)^{2} \right] \left[ n \left( \sum{y^{2}} \right)-\left( \sum{y} \right)^{2} \right] }}

r= \frac{ 5 \left( 151 \right)-\left( 27 \right) \left( 26 \right) }{ \sqrt{ \left[ 5 \left( 175 \right)-\left( 27 \right)^{2} \right] \left[ 5 \left( 158 \right)-\left( 26 \right)^{2} \right] }}

r= \frac{ 53 }{ \sqrt{ 16644 } }

r= 0.4108156844



Permutations and Combinations


Permutations

In Permutations the order matters.
nPr = P(n,r) = \frac{n!}{(n-r)!}

Combinations

In Combinations order does not matter.
nCr = C(n,r) = \frac{n!}{r!(n-r)!}

google play badge